Diffractive Results at CDF II

Michele Gallinaro – The Rockefeller University ISMD 2003, Krakow, Poland

- ✓ Diffraction at the Tevatron
- ✓ New Detectors for Run II
- ✓ Diffractive Dijets
- ✓ DPE Dijet Production
 - exclusive dijet production
 - exclusive low-mass states

Diffraction at the Tevatron

> Large rapidity gaps are signatures for diffraction

Soft diffraction

- **√SD**
- **√DD**
- **✓DPE**
- √multi-Gap

Hard diffraction

- \checkmark SD (W, jet-jet, b-quark, J/ψ)
- ✓SD (w/RP) dijets (630 GeV and 1.8 TeV)
- √ Forward jets (Jet-Gap-Jet)
- **✓ DPE** dijets

If you want to know more...

Soft diffraction	SD	PRD 50 (1994) 5535
	DD	PRL 87 (2001) 141802
	DPE	to be submitted to PRL
	multi-gap	to be published in PRL
Hard diffraction	W	PRL 78 (1997) 2698
	b-quark	PRL 84 (2000) 232
	J/ψ	PRL 87 (2001) 241802
	jet-jet	PRL 79 (1997) 2636
	jj w/RP	PRL 84 (2000) 5043, PRL 88 (2002) 151802
	forward jets	PRLs 74 (1995) 855; 80 (1998) 1156; 81 (1998) 5278
	DPE dijets	PRL 85 (2000) 4217
·		

for a review: K. Goulianos hep-ph/0306085

First Goals for Run II

- ✓ Diffractive structure function
 ⇒ Q² and ξ dependence
- ✓ Exclusive production
 ⇒ dijet, heavy flavor, low-mass

Tevatron Collider

- high (low ?) inst. luminosity
 (L ~ 2-3 x 10³¹ cm⁻²sec⁻¹)
- multiple interactions

- Tevatron and detector upgrades
 - ✓C.M. energy 1.96 TeV
 - √ 396 nsec bunch spacing

New Detectors for Run II

- Tracking
 - √ Silicon
 - ✓ Central Outer Tracker
- Time of Flight
- Expanded Muon Coverage
- Endplug Calorimeter
- Forward Detectors
- Trigger
 - ✓ Tracks @ L1
 - √ Silicon Tracks @ L2
- DAQ (132 ns)

Forward Detectors

Run II Romar Pots 56m to CDF Acceptance 0.02< €< 0.1 0<|t|<2 GeV **Dipoles** BSC 5.5<|n|<7.5 MiniPlua 3.5<|n|<5.1 3.7< | η | <4.7 P Central Plua

MiniPlug

BSC

- **√** Roman Pots Spectrometer
- √ Beam Shower Counters
- ✓ MiniPlug Calorimeter

⇒ Larger η coverage for rapidity gaps and jets

New MiniPlug Calorimeter

- •liquid scintillator + lead
- •towerless geometry
- •full coverage: 3.5< $|\eta|$ < 5.1
- •32 r.l.
- installed in November 2001

Measure:

very forward jet energies and position

multiplicity

MiniPlug Design

Trigger

- RP is triggered on leading antiprotons
- Use RP + jet triggers

Event Samples

Dedicated triggers

⇒ total rate ~3Hz

CDF

ND (J5)	at least one calorimeter tower with E _T >5 GeV
RP inclusive	three-fold coincidence in RP counters
RP+J5	RP inclusive together with J5
RP+J5+BSC_Gap_P	DPE dijet candidates

Diffractive Dijets

ξ: fraction of anti-proton momentum loss

β: fraction of pomeron momentum carried by parton

parton
$$\textbf{X}_{Bj} \equiv \boldsymbol{\beta} \cdot \boldsymbol{\xi}$$

$$\frac{\sigma(SD_{jj})}{\sigma(ND_{jj})} = \frac{F_{jj}^{D}(x)}{F_{jj}(x)} \quad (LO QCD)$$

CDF Run I result suppressed — by a factor of ~10 relative to HERA

⇒breakdown of QCD factorization (renormalization removes s-dependence) K. Goulianos, PLB 358 (1995) 379

ξ: Momentum Loss Fraction

Measure fractional momentum loss of anti-proton

Diffractive events are boosted towards positive η \Rightarrow small ξ

Single Diffractive Dijets

Measure ξ (\overline{p} momentum loss fraction) from calorimeter information

Approx. flat at ξ <0.1

$$\frac{d\sigma}{d\xi} \propto \frac{1}{\xi} \rightarrow \frac{d\sigma}{d(\log \xi)} = \text{constant}$$

- Compare diffractive events to ND
- Measure diffractive structure function

SD: Event Selection

Data presented from 8 pb⁻¹:

RP+J5	352,359 events
≥ 2 Jets (E _T >5 GeV, $ \eta {<} 2.5)$	175,292 events
RP offline coincidence	168,153 events
SD (0.02<ξ<0.1)	15,209 events

- ✓ RP acceptance ~80% (from Run I)
- √ negligible (< 1-2%) RP background trigger
 </p>

Kinematic Properties

Compare ND and SD

Ratio of SD/ND Events

$$\mathbf{x}_{\mathrm{Bj}} = \frac{\sum_{\mathrm{jet}} \mathbf{E}_{\mathrm{T}} \mathbf{e}^{-\eta}}{\sqrt{\mathrm{s}}}$$
(jet=1,2,3 if E_T>5 GeV)

- slope and normalization agree with Run I result
- no appreciable ξ dependence (as in Run I)
- work in progress to evaluate ratio at smaller ξ values

Q² Dependence

⇒ ratio is independent of Q²
Pomeron evolves similarly to proton (?)

DPE Dijet Production

DPE Dijets in Run I

 $R(DPE/SD) \approx k \times R(SD/ND)$

Question: k = 1?

Answer:

 $R(DPE/SD) \approx 5 \times R(SD/ND)$

⇒additional gap is un-suppressed

DPE Enhanced Sample

use dedicated DPE trigger (RP+J5+BSC_Gap_P)

Data presented from 26 pb-1:

Triggers	397 k
N _{vertex} ≤ 1, z _{vertex} <60 cm	365 k
RP offline cut	309 k
$N_{jets} \ge 2 (E_T > 5 \text{ GeV}, \eta < 2.5)$	163 k
E _T (jet2)>10 GeV	116,473
SD (0.01<ξ<0.1)	54,552
DPE (MP-East N _{hit} =0)	(17,101)

DPE: kinematics

Transverse Energy

DPE = SD_ + GAP

Exclusive Dijet Production

Exclusive dijets (using Run I kinematics): $\sigma \sim 1$ nb

Recent calculations: σ~60 pb $(25 < E_T^{jet} < 35 \text{ GeV}, |\eta_1 - \eta_2| < 2)$

Boonekamp, Peschanski, Royon Phys. Rev. Lett. 87, 251806(2001)

Appleby, Forshaw Phys. Lett. B541, 108 (2002)

Exclusive Dijets in Run I

- ✓ antiproton tag: 0.035<ξ<0.095
- ✓2 jets, E_T>7 GeV
- ✓ proton-side gap $(2.4 < \eta < 5.9)$
- ⇒ observed 132 events

Mass fraction:
$$R_{jj} = \frac{M_{jj}}{M_x}$$

 $\Rightarrow \sigma_{jj}$ (excl.) < 3.7 nb (95% CL)

Dijet Mass Fraction

CDF Run II Preliminary

independent of rapidity gap size

Minimum E _T (Jet1)	Cross section (R _{jj} >0.8)
10 GeV	970 ± 65(stat) ± 272(syst) pb
25 GeV	34 ± 5(stat) ± 10(syst) pb

Exclusive Dijet Events?

Exclusive low-mass states

(same quantum numbers as Higgs boson)

Event selection:

- ✓ start from J/ψ sample
- ✓ exclusive events
- ✓ invariant mass (μμ+EM tower)

Background:

- ✓ cosmics
- √ calorimeter noise

Event Selection

Data sample of 93 pb⁻¹:

BSC+MP veto	107
(calorimeter+CLC+trk+muon) veto	23
EM tower	10

- √ mass resolution poor in both, worse in data
- √ bckg from multiplicity fluctuations (under threshold)
- √ difficult to estimate noise contribution

cross section upper limit for exclusive production

$$\Rightarrow$$
 $\sigma_{J/\psi+\gamma}$ (excl.) = 49 ± 18(stat) ± 39(syst) pb

Summary

- CDF forward detectors working well
- Dedicated diffractive triggers
- Re-established Run I measurements
- Preliminary results show no Q² dependence in SD/ND
- Increase in DPE events shows no exclusive dijet production

Run II analyses are well underway!

